Differential Modules on p-Adic Polyannuli—Erratum Citation
نویسندگان
چکیده
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
منابع مشابه
Differential modules on p-adic polyannuli
We consider variational properties of some numerical invariants, measuring convergence of local horizontal sections, associated to differential modules on polyannuli over a nonarchimedean field of characteristic zero. This extends prior work in the onedimensional case of Christol, Dwork, Robba, Young, et al. Our results do not require positive residue characteristic; thus besides their relevanc...
متن کاملFiltrations of smooth principal series and Iwasawa modules
Let $G$ be a reductive $p$-adic group. We consider the general question of whether the reducibility of an induced representation can be detected in a ``co-rank one" situation. For smooth complex representations induced from supercuspidal representations, we show that a sufficient condition is the existence of a subquotient that does not appear as a subrepresentation. An import...
متن کاملErratum: Applications of epi-retractable and co-epi-retractable modules
In this errata, we reconsider and modify two propositions and their corollaries which were written on epi-retractable and co-epi-retractable modules.
متن کاملN ov 2 00 6 Swan conductors for p - adic differential modules , I : A local construction Kiran
We define a numerical invariant, the differential Swan conductor, for certain differential modules on a rigid analytic annulus over a p-adic field. This gives a definition of a conductor for p-adic Galois representations with finite local monodromy over an equal characteristic discretely valued field, which agrees with the usual Swan conductor when the residue field is perfect.
متن کاملar X iv : m at h / 01 04 17 8 v 1 [ m at h . N T ] 1 8 A pr 2 00 1 Arithmetic theory of q - difference equations
Part II. p-adic methods §3. Considerations on the differential case §4. Introduction to p-adic q-difference modules 4.1. p-adic estimates of q-binomials 4.2. The Gauss norm and the invariant χv(M) 4.3. q-analogue of the Dwork-Frobenius theorem §5. p-adic criteria for unipotent reduction 5.1. q-difference modules having unipotent reduction modulo ̟v 5.2. q-difference modules having unipotent redu...
متن کامل